Описание к Уроку

А как искать это самое ОДЗ?  Внимательно осматриваем пример и ищем опасные места. Места, в которых возможны запретные действия. Таких запретных действий в математике очень мало.

Больше уроков на сайте  https://mriya-urok.com/

 

 

 

ОДЗ (Область Допустимых Значений)

Областью допустимых значений уравнения называется множество значений х, при котором правая и левая части уравнения имеют смысл.

Это те значения х, которые могут быть в принципе. Скажем, в уравнении = 1  мы не знаем пока, чему равен х. Мы пока уравнение не решили. Но уже твёрдо знаем, что х не может равняться нулю ни при каких обстоятельствах! На ноль делить нельзя! На любое другое число – целое, дробное, отрицательное – пожалуйста, а на ноль – ни в коем разе! Иначе исходное выражение становится бессмыслицей. Это означает, что ОДЗ в этом примере: х – любое, кроме нуля. Уловили?

Как находить, как  записывать, как с этим работать?

Очень просто. Рядом с примером пишите ОДЗ. Под этими известными буквами, глядя на исходное уравнение, записываем значения х, которые разрешены для исходного примера. Или можно наоборот: найти запретные значения х, при которых исходный пример теряет всякий смысл, и исключить их.

Далее мы спокойно решаем уравнение, находим корни. И проверяем их на соответствие ОДЗ. Те решения или корни, которые не входят в ОДЗ – безжалостно выбрасываются.

Но и их не все помнят. Я сейчас их напомню, и советую их запомнить.

Выражение, стоящее под знаком корня четной кратности, должно быть больше или равно нуля.

Выражение, стоящее в знаменателе дроби, не может быть равно нулю.

  1. Есть две функции, которые содержат «скрытую» дробь:

х, n, n

Есть ещё запреты в логарифмических уравнениях – это мы рассмотрим в соответствующих темах. Всё. Когда мы нашли опасные места, вычисляем х, которые приведут к бессмыслице.

Чтобы найти область допустимых значений выражения, нужно исследовать, присутствуют ли в уравнении выражения, которые я перечислила выше. И по мере обнаружения выражений, записывать задаваемые ими ограничения, двигаясь «снаружи» «внутрь». И исключаем их.

Важно! Для нахождения ОДЗ мы не решаем пример! Мы решаем кусочки примера для нахождения запретных иксов. Это сложно выглядит в разъяснениях, но практически – очень легко.

Я специально на предыдущих уроках ничего не говорила про ОДЗ. Чтобы вас не спугнуть…  В рассмотренных примерах  ОДЗ никак не сказалось на ответах. Ведь в наших перечисленных запретах показательной функции нет. Такое бывает. Но в заданиях  по ВНЕШНЕМУ  НЕЗАВИСИМОМУ ТЕСТИРОВАНИЮ ОДЗ, как правило, влияет на ответ! Ее писать надо не для проверяющих, для себя. не пишут, если очевидно, что х – любое число. Как, например, в линейных уравнениях.

В массе примеров нахождение ОДЗ позволяет получить ответ без громоздких выкладок. А то и вовсе устно. В некоторых уравнениях — представляет собой пустое множество. А значит, исходное уравнение не имеет решений. Или в там находится одно или несколько чисел, и несложная подстановка быстро определяет корни.

 

Дальше спокойно решаем уравнение.

Что не нравится? Правильно – дробь. Мне она тоже не нравится, поэтому предлагаю от неё избавиться. Это можно сделать по разному. Я для того, чтобы избавиться от знаменателя, умножу обе части уравнения на общий знаменатель х-4.

 

 

 

Добавлено Октябрь 22, 2014, Yurka Категория Тэг

Комментарии

Отправить ответ

Оставьте первый комментарий!

Notify of

wpDiscuz