Описание к Уроку

Чтобы все было понятно, к этому уроку стоит подготовиться: вспомни, что такое тангенс угла прямоугольного треугольника, что такое угловой коэффициент прямой. А термины «приращение», значение «функции», «аргумент» тебе не так давно встречались.

Больше уроков на сайте  https://mriya-urok.com/

Смотри также уроки: “Производная”,   “Производная многочлена”Производные элементарных функций«

Геометрический смысл производной заключается в том, что численно производная функции в данной точке равна тангенсу угла, образованного касательной, проведенной через эту точку к данной кривой, и положительным направлением оси Ох

Найти угол наклона касательной к графику функции y=f (x) в точке х0, если f ‘(х0) = 1.

Решение.

Значение производной в точке касания х0 и есть значение тангенса угла наклона касательной (геометрический смысл производной). Имеем: f ‘(х0) = tgα = 1  → α = 45°,  так как  tg45°=1.

Ответ: касательная к графику данной функции образует с положительным направлением оси Ох угол, равный 45°

 

То есть задачи, в которых дан график функции, касательная к этому графику в определённой точке, и требуется найти производную в точке касания, сводятся к нахождению углового коэффициент касательной (либо тангенса угла наклона касательной, что одно и тоже).

Ниже рассмотрим  решение таких задач через нахождение тангенса угла между касательной и осью абсцисс (осью ох), ещё один способ решения (нахождение производной через угловой коэффициент касательной ) рассмотрим в недалёком будущем. Также будем рассматривать задачи, где требуется знание свойств производной для чтения графика функции. Не пропустите!

Обратите внимание, что на координатной плоскости обозначены две точки через которые проходит касательная – это очень важный момент (можно сказать ключевой в этих задачах).

 

 

 

Добавлено Октябрь 22, 2014, Yurka Категория Тэг

Комментарии

Отправить ответ

Оставьте первый комментарий!

Notify of

wpDiscuz